Sunflower Genome

2015-01-14

Chris Grassa

Closest relative of domesticated sunflower

- Woody
- Downy-mildew resistance

- Bi-modal flowering time

Helianthus argophyllus (coastal) Brook Moyers

Domestication & Improvement

Linkage Group 10

Landrace H. annuus H. a. texanus

Mitochondrial Genome Assembly

Restriction site maps

Siculelal & Palmer, 1988

Bars represent 10 μm.

Nuclear Genome: ~3.6 Gbp 17 chromosomes

Cytological characterization of sunflower by

Cytological characterization of sunflower by in situ hybridization using homologous rDNA sequences and a BAC clone containing highly represented repetitive retrotransposon-like sequences

P. Talia, E. Greizerstein, C. Díaz Quijano, L. Peluffo, L. Fernández, P. Fernández, H.E. Hopp, N. Paniego, R.A. Heinz, and L. Poggio

Highly Repetitive Genome

The sunflower (*Helianthus annuus* L.) genome reflects a recent history of biased accumulation of transposable elements

S. Evan Staton¹, Bradley H. Bakken², Benjamin K. Blackman^{3,†}, Mark A. Chapman^{4,‡}, Nolan C. Kane⁵, Shunxue Tang^{6,§}, Mark C. Ungerer², Steven J. Knapp^{6,¶}, Loren H. Rieseberg⁵ and John M. Burke^{4,*}

Young Repeats, Low Divergence

Evan Staton

Sunflower is ancient octaploid

Strategy

43 Read Libraries

	Illumina ~60x	454 ~24x								
	LIBRARY_NAME	MEAN	STDDEV	LIBRARY_NAME	MEAN S	TDDEV				
ht	A1	13	6 23	01V17GRL2	368	133				
Igme	A2	13	9 28	MPS004761454RL	373	124				
	A5	16	0 34	MPS006655454RL	383	120				
- La	200bp_HA0001	19	2 21	01V17G454RL	384	136				
لے ا	500bp_HA0002	40	8 46	MPS004762454RL	394	125				
סנ				HA412Long	592	169				
S S				MAYha412long	648	205				
	2kbp HA0003 61YEJAAXX 1	151	0 321							
	MP1	206	2 1744	01V17G454PE1	2890	485				
	MP2.BD0TEHACXX_3	245	1 295	01V17G454PE2	2929	515				
	MP3.AC0C9VACXX_4	250	0 272	MPS008920454PE55kb	3259	1148				
	LBM11326_GFI-529_3kb_LJD	255	0 760	MPS008921454PE6kb	3517	1412				
	MP4.BD0TEHACXX_5	332	0 443	MPS006655454PE20Kb	4491	3390				
	HA412_GGCTAC_40kb_LJD	345	8 1910	MPS004761454PE38kb	7272	1060				
E L	MP5.AC0C9VACXX_6	384	8 339	MPS008922454PE8kb	7584	1360				
te	5kbp_HA0004_626E6AAXX_5	441	8 846	MPS004761454PE210kb	7897	1146				
٨a	MP6.BD0TEHACXX_7	465	3 468	MPS008923454PE10kb	10041	1587				
2	INX517*	439	4 321	MPS004761454PE10kb	10441	1932				
	LBM11326_GFI-546_40kb_LJD	508	4 3642	MPS004761454PE15kb	11157	5060				
	INX518*	528	6 2016	MPS009917454PE20kb	12507	4667				
	LBM11325_GFI-530_8kb_LJD	711	4 1090	MPS008924454PE20kb	12955	4944				
	LBM_CAGATC_8kb.LJD	713	2 1057	MPS009918454PE20kb	13463	5190				
	LBM_GATCAG_20kb.LJD	1388	7 5153							
	LBM1481_GFI-531_20kb_LJD	1686	3 4578							

The Eulerian path/de Bruijn graph approach

- 1. kmer hash table
- 2. de Bruijn graph
- 3. simplification of the graph and Eulerian path search

Examples: Euler, Velvet, Allpath, Abyss, SOAPdenovo...

de Bruijn Graph

Tristan Lefébure

The Overlap-layout-consensus (OLC) approach

- Pairwise alignments and overlap graph
- Graph Layout: search of a single path in the graph (i.e. the Hamiltonian path)
- Multiple sequence alignments and consensus

Examples: Newbler, Celera, Arachne...

Tristan Lefébure

Sequence Based Genetic Map

Hamming

Template Map

Efficient and Accurate Construction of Genetic Linkage Maps from the Minimum Spanning Tree of a Graph

Yonghui Wu¹, Prasanna R. Bhat², Timothy J. Close², Stefano Lonardi¹*

1 Department of Computer Science and Engineering, University of California Riverside, Riverside, California, United States of America, 2 Department of Botany and Plant Sciences, University of California Riverside, Riverside, California, United States of America

Whole Genome Profiling Physical Map

- A) 12x BAC library
- B) Barcoded BAC Pools
- C) Restriction Digest and Sequencing
- D) Deconvolution of BAC tags
- E) BAC-contig assembly

per LG: Assembly merge & SSPACE scaffolding

Sariel Hubner

#### vvv LG08 scaffold40	03 size86	505 TO	ctg66	vvv	####		
# LG:08 cM: (56.93						
#							
#pMap_TAG	scaffold	l_bp_pMa	p_CTG_	fpc			
#		10	0 102	115			
GAATTCCGAACACACTGATGTGAT	ГТА	17724	X				
GAATTCGTTGTAAAACAGAGATAT	IGATTTC	17746	X				
GAATTCTAGAATATCCTTGAATA	CAACCAT	18170	X				
GAATTCAAGGAAACACGAAATGA	GTGGTTT	18974	X				
GAATTCATTTTCATCAACATGCAT	ГСАТСТТ	20734	X				
GAATTCAAGGTTGATTTTGAAGA	AGAACTG	20758	X				
GAATTCGAGCTAGCTCGGCTTGG	CTCGATC	25585	.X.				
GAATTCTAATCAAGCCGAGCTCG/	AGCCTCA	25609	Χ				
#### ^^^ LG08 scaffold40	03 size86	505 for	ward:	2 ^^^ #	###		
GAATTCTAATCAAGCCGAGCTCG/	AGCCTCA	25609	Χ				
GAATTCGAGCTAGCTCGGCTTGG	CTCGATC	25585	.X. 🛉	## al;~	nmont o	ooning /	aham
GAATTCAAGGTTGATTTTGAAGA	AGAACTG	20758	X	## allg	hango i	coring_: n index	
GAATTCATTTTCATCAACATGCAT	TCATCTT	20734	X	## no c	formor	d one	- TI - T
GAATTCAAGGAAACACGAAATGAG	GTGGTTT	18974	X	## 110ve	forward		- +2
GAATTCTAGAATATCCTTGAATA	CAACCAT	18170	X	## 110VC	rovers		- 0 1
GAATTCGTTGTAAAACAGAGATA	IGATTTC	17746	X	## 110VE	I EVELS		- 1
GAATTCCGAACACACTGATGTGA	ГТА	17724	X				
#### ^^^ LG08 scaffold40	03 size86	505 rev	erse:	10 ^^^	####		

123139 GAATTCACTTCTATATTGAGTTA 136505 GAATTCGAAGCGGTATGGTGATAAACGGAA 136529 GAATTCAACTGCATCCACTTCCTCGCCTTC 144759 GAATTCTTTGTTGATGTTTGCCGTAGCATA 144783 GAATTCAAACCTTGTGCAAATCGAACTTCC 146724 GAATTCTGAAGTGTAGGCATTATACACGGG 68478 GAATTCGCTCGGTTCCGATTCTTCTTCACG 68494 GAATTCCGATCCGGATAAGTAAAAGAAGGC 69232 GAATTCTTCAATCGTGTCTGTCTCCTTCAT 70441 GAATTCGTATGAATATAATATAATGTATAT 75952 GAATTCGAGTGCAAAACTATCATGTAGTTG 75973 GAATTCACTTCTATATTGAGTTA 89339 GAATTCGAAGCGGTATGGTGATAAACGGAA 89363 GAATTCAACTGCATCCACTTCCTCGCCTTC 122648 GAATTCACCTCTGTAGGGTGGTTCGAAGGT 122672 GAATTCAGCACCAGTTGCACCACCTCCGCC 127057 GAATTCCATCTTTGCCATAAGACAACTGTT 133423 GAATTCAGTAAAGAAATATTTACAGACAAT 135861 GAATTCCTGTTATCAAAATCTACTTTGAAT 149878 GAATTCGCAGCTGAATTGTATAGAACTTTT 151603 GAATTCAAGTTGACAGGGCGTGAAAACGAG 156717 GAATTCTCAATTGATCAAACAGTACAACTT 163936 GAATTCGCCACCTACAGAACATCCTTA 168229 GAATTCTTACAGGACCCCGCAATATCATGT 168252 GAATTCCGATAACTGGTTCTCGCTATTA 7693 GAATTCCCCGATCTCCACCCTGCCCCTGAC 4876 GAATTCCAATACAACGTCAAAAGAATCAAG 3701 GAATTCGAATGTAGGTGACCCGTTA 3679 GAATTCAAATGCTCTAAAGGCATTAGACAA 2013 GAATTCAAGTTTGAACAATATAAAATTCAA 42716 GAATTECAATACAACGTEAAAAGAATEAAG 41541 GAATTCGAATGTAGGTGACCCGTTA 41519 GAATTCAAATGCTCTAAAGGCATTAGACAA 39853 GAATTCAAGTTTGAACAATATAAAATTCAA 25719 GAATTCATAATCCCCATCCTTATACTTTA 23815 GAATTCCTGATAGGTAAAATATATAAGATA 1105 GAATTCCCACGTTTATCTTTACTAATGGGG 2694 GAATTCGGAACACATAGGCAACCCATTA 6343 GAATTCATGCTATTAGACAATTACTTTGAA 13943 GAATTCGAACTGAGATCCAATATCTCTAAC 13967 GAATTETCAAATTGACAATGETATCETTCC 24878 GAATTCAGAAAACAATTTGGGAATCAAAAC 24894 GAATTCAGCTTTTGGAATAGGAGCACACTG 28878 GAATTCATTGATTCGGTCTTCGGGGTAGCT 31683 GAATTCAATCGGAGTTCGTTTGAGCCGAAT 35320 GAATTCCATATATTGGCTCCAATTATAGGG 35344 GAATTCGACTTTATAGCTCCATTCTAAAGG 97048 GAATTCTTCGTGCTTTGCTGCCATGTACGC 88932 GAATTCATAATCCCCATCCTTATACTTTA 75235 GAATTCCTGATAGGTAAAATATATAAGATA 37692 GAATTCGACTTTATAGCTCCATTCTAAAGG 37668 GAATTCCATATATTGGCTCCAATTATAGGG 34031 GAATTCAATCGGAGTTCGTTTGAGCCGAAT 31091 GAATTCATCTTGTTTGACTTTGCAGCCGGG 28318 GAATTCATTGATTCGGTCTTCGGGGTAGCT 24334 GAATTCAGCTTTTGGAATAGGAGCACACTG 24310 GAATTCAGAAAACAATTTGGGAATCAAAAC 13967 GAATTCTCAAATTGACAATGCTATCCTTCC 13943 GAATTCGAACTGAGATCCAATATCTCTAAC 6343 GAATTCATGCTATTAGACAATTACTTTGAA 2694 GAATTCGGAACACATAGGCAACCCATTA 1105 GAATTCCCACGTTTATCTTTACTAATGGGG

5545 GAATTCACCGGCATACATTCTACAGACCGT 7857 GAATTCAAATATTTCCAACTACTAGAGCAC 7879 GAATTCTCCTTGGAGATCTAGTTTA 9292 GAATTCAGTCGGCATCGATTCGGTTCATTA 18748 GAATTCAAACTACATGAACGAAGACAAAAT

Œ

29.03

63907 GAATTCCATGTAGGTTCGAATCATTATACG 69921 GAATTCGACCTGGCGATGAGGCGGTAGCCT 69945 GAATTCCAGATCGAGCGAACTCCAGGAGCA 84071 GAATTCAAGGCTGAAGTCGACATCTTCCAA 84116 GAATTCAGCTATCGATGTCTCAACGTCTTC 84619 GAATTCTCTAGATATCAAAGATAGATATTA 84643 GAATTCGTACATAAATATCATGATATTGGT 115636 GAATTCGCTCGGTTCCGATTCTTCTTCACG 115660 GAATTCCGATCCGGATAAGTAAAAGAAGGC 116398 GAATTCTTCAATCGTGTCTGTCTCCTTCAT 117607 GAATTCGTATGAATATAATATAATGTATAT 123118 GAATTCGAGTGCAAAACTATCATGTAGTTG 123139 GAATTCACTTCTATATTGAGTTA 136505 GAATTCGAAGCGGTATGGTGATAAACGGAA 136529 GAATTCAACTGCATCCACTTCCTCGCCTTC 144759 GAATTCTTTGTTGATGTTTGCCGTAGCATA 144783 GAATTCAAACCTTGTGCAAATCGAACTTCC 146724 GAATTCTGAAGTGTAGGCATTATACACGGG

	11	16	38	46	49	52	55	59	66	70	75
		_									
				•	•	•	•	•	•	•	
				•	•	•	•	•	•	•	
•	· .			•	•	•	•	•	•	•	
•		· ·		•	•	•	•	•	•	•	
•	•		•	•	•	•	•	•	•	•	
•	•		•	•	•	•	•	•	•	•	
•	•		· ·		•	•	•	•	•	•	
•	•	•		•	•	•	•	•	•	•	
•	•	•		•	•	•	•	•	•	•	
•	•	•		•	•	•	•	•	•	•	
·	•	•		•	•	•	•	•	•	•	
·					•	•	•	•	•	•	
·		•	•	•	•		<u> </u>	•	•	•	
•	•	•	•	•	•		•	•	•	•	
•	•	•	•	•	•		•	•	•	•	
·	•	•	•	•	•		•	•	•	•	
•	•	•	•	•	•			•	•	•	
•	•	•	•	•	•		•	•	•	•	

scaffold116 (+)

Stats

assembly	nATCG	length	n	Ν	150 1	N90	
gold-superscaffolds	1658168430) 31319	940255	14940	476491	89759	
bronze- pseudomolecules	1989332786	5 3641	596391	17			
bronze- superscaffolds	2037102379	9 41680	038957	31392	210251	54824	
AllPathsLG	993696150) 11568	891308	100027	20687	6018	
Nov22k22	2163238910	3082	784204	453539	24876	1541	
454AllContigs	1946374353	3 19463	374353	1603248	2009	509	

mRNA discovery strategy

- Genotype XRQ (B)
 - Illumina 100bp
- 3 vegetative tissues
 - Leaves, roots and stem
- 8 floral tissues
 - Bracts
 - Ray florets: Ligule (tube and lamina)
 - Ray florets: Sterile ovary
 - Disc florets: Style (stigmata + style)
 - Disc florets: Stamens (anthers + filaments)
 - Disc florets: Corolla(Disc floret petals)
 - Disc florets: Seeds (Disc floret seeds)
 - Pollen
- collected at 3-5 different developmental stages encing 12/04/2013
 Vancouver

]] cl	0	Th (DE	훩 Th	g e	PN	Ev	W	f Bi	PN AS W	O "C	w	E	M: N	<mark>1</mark> Ini H		▶ Gr	Ar	SFA	* •	e 🕌	He	De	D pc	C:	bi	То	8 rh
<u>^</u> ł	nttp	s:// ww	w.heli	agen	e.org/	HA412	2.v1.1.l	bronze	.2014	1015/																	🊱 🖌	☆
Горіс	s	0 💈		8+	🕅 🔖	in			 Ø 			6	0	<u></u>	8 Read	ler 🚡		# (w S	×	1 0	В	Q 👸	5	R	Q	g usd	A_acc
	С	onsor	tium	-	File	Viev	v H	elp																				
	0		20,	00,00	00	40,0	00,000		60,000),000	8	80,000,0	000	10	0,000,00	00	120,0	00,000		140,000	0,000	16	60,000,0	000	180,0	00,000	20	00,000
										\rightarrow	(λ ε	χ Q	Ð	Ha4	🖌 🖌 Ha	a4:1716	639811	1718682	20 (22.8	34 Kb)		Go					
4	-	17,165,	000					17,	170,000	0					17,175	,000					17,1	180,000)				17,	185,00
on	8	Helian	thus a	nnuus	XRQ R	NASeq	transcr	ipts	Ha' Ha	T13I0456 T13I045	75 5675																	
on	8	Helian	thus a	nnuus	412-H	O RNAS	eq tran	scripts			•	-	+1								••		-					
on	8	Eugen	eAnno	tation	V1.1																							
on	airp	in glyco	sidase	-lik				Ha412	2v1r1_04	lg005740	+	•																
2								Ha41 Autol	I2v1r1_ IPR: IPI	04g005 R00092	5740 2:D-ga	alactosid	le/L-rha	amnose	e binding	SUEL	lectin d	lomain;	IPR001	944:GI	ycoside	hydrola	ase, far	mily 35;	; IPR0178	353:Glyd	coside	•
I																												
5																												

Jerome Gouzy

91.9 EM

87.5 [M

